
ABSTRACT: Polar compounds of virgin olive oils were ana-
lyzed. They influence oil flavor and aroma and improve the
shelf-life of the oil. The orthodiphenolic fraction is particularly
significant for oil stability because of its antioxidative activity. A
relationship between the composition of the whole fraction of
polar compounds and the state of health of the olives was es-
tablished. For this purpose, oil samples were obtained from
olives that had reached different degrees of ripeness and that
had been affected by Dacus oleae infestation differently. The
polar compounds were then analyzed by high-performance liq-
uid chromatography. The data set was studied by means of
chemometric methods. Partial least squares regression was used
to obtain models that show a significant correlation between
composition of the oil’s polar compounds and conditions of the
olives sampled. In particular, compounds with antioxidative ac-
tivity were directly linked with the state of health of the olives.
The models obtained allow tracing of the state of health of the
olives sampled through analysis of the polar fraction of virgin
olive oil with a high degree of accuracy, and thus prediction of
the oil’s expected shelf life.
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Polar compounds of virgin olive oils are extremely important;
they include phenolic compounds that contribute significantly
to oil flavor and aroma (1–4) and to its oxidation stability (5).
Composition and amounts of phenolic compounds are influ-
enced by olive cultivar, climatic conditions, cultivation meth-
ods, industrial procedures employed for oil extraction (1,2,
6–8), and in particular, by the degree of ripeness (1,6,9–12)
and the state of health of the olives. Recent studies also
showed that infestation by Dacus oleae and treatments used
to fight it also influence phenolic compounds in virgin olive
oils (13,14). These factors can reduce the orthodiphenolic
fraction that ensures oxidation stability and is a major deter-

minant for oil shelf life (1,3,15–18). The loss of orthodiphe-
nolics is clearly visible when infested olives contain pupae
and/or exit holes of adult insects (13).

In addition to phenolic compounds with well-known struc-
tures, high-performance liquid chromatography (HPLC)
chromatograms of polar compounds in virgin olive oil sam-
ples show other compounds that have structures that are still
being studied and appear to be correlated with the state of
olive health. An extended analysis that includes these com-
pounds thus provides a high number of variables that depend
significantly on the state of olive health. The use of chemo-
metric methods, already widely tested in the characterization
of virgin olive oils (19–23), allows a simultaneous and opti-
mized use of all available information.

This study analyzed polar compounds in virgin olive oil
samples obtained from olives whose degree of ripeness and
state of health were known. It aimed at establishing if the
analysis of polar compounds, integrated with chemometric
methods, allowed the definition of models to evaluate the
quality of virgin olive oils.

EXPERIMENTAL PROCEDURES

Samples. Oil samples were obtained from an experimental
grove located in Levanto (East Liguria, Italy). Two different
1-ha areas were marked: in the first area, olive trees did not
undergo any treatment; in the second area, dimethoate was
used for anti-Dacus treatment and applied to whole trees
(treated = t).

Olives were picked directly from the tree. They were ex-
amined by stereoscopic microscope to select thirty-two 1-kg
samples, homogeneous with regard to Dacus oleae infesta-
tion: 100% healthy olives [H]; 100% olives with third instar
larvae [L]; 100% olives with Dacus pupae and/or exit holes
[P]; and unselected olives, i.e., olives reflecting infestation
conditions in the selected area [U].

Other 1-kg olive samples were obtained by collecting
olives that had spontaneously fallen into nets spread under
the trees [F]. Each sample was immediately crushed and
pressed in the laboratory by simulating industrial processing
conditions.
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Two further identical samples of unselected olives (1 kg
each) were collected, then stored and processed after 7 d [U7;
U7t] and 10 d [U10; U10t], respectively. This allowed evalu-
ation of the consequences on polar compounds of the com-
mon farming practice of accumulating olives for a few days
before processing.

This research was carried out on 1993 and 1994 crops. In
November 1993, olives were picked when they reached a
maximum in oil content (8 samples). Because of widespread
infestation, in 1993 it was not possible to isolate a sample of
100% healthy olives. In 1994, three different ripening stages
were considered: olives were picked when their oil content
was still rising, after 20 d, when the maximum was reached,
and the last batch was picked after another 20 d. These three
different olive-ripening stages are indicated with 1, 2, and 3
as the prefix for 1994 oil samples (24 samples).

Chemicals. HPLC or analytical-grade reagents were sup-
plied by Merck (Darmstadt, Germany). Hydroxytyrosol [(3,4-
dihydroxyphenyl)ethanol] was synthesized according the
method of Baraldi et al. (24). Oleoeuropeine glycoside 
was obtained from Roth Chemica (Karlsruhe, Germany).
Tyrosol [(4-hydroxyphenyl)ethanol], vanillic acid [4-hydroxy-
3-methoxy-benzoic acid], p-coumaric acid [3-(4-hydroxy-
phenyl)propenoic acid] and syringic acid [4-hydroxy-3,5-
dimethoxy-benzoic acid] were supplied by Fluka (Buchs,
Switzerland). The latter was used as internal standard (i.s.).

Extraction and purification of polar compounds. Olive oil
(20 g) was dissolved in 10 mL hexane. A solution (1 mL) of
the internal standard in methanol (10 mg/100 mL) was added.
The obtained solution was extracted three times with 12.5 mL
of methanol/water (60:40, vol/vol); each time it was stirred
over a magnetic plate for 15 min and then separated into the
two phases by centrifugation at 3000 × g for 10 min. Hydroal-
coholic extracts were then combined and washed twice with
15 mL hexane. The hydroalcoholic extracts (10 mL) were
evaporated under vacuum at a temperature below 30°C and
then dissolved in 1 mL methanol immediately before HPLC
analysis.

HPLC analysis. HPLC was performed with a Hewlett-
Packard Series 1050 liquid chromatographic system (Wald-
bronn, Germany) (loop 20 µL) equipped with a diode array
detector. A Lichrosorb RP18 column (4.0 mm i.d. × 250 mm;
particle size 5 µm) (Merck, Darmstadt) was used. Elution was
performed at a flow rate of 1.0 mL/min with a mobile phase
of water/acetic acid (98:2, vol/vol) (solvent A) and metha-
nol/acetonitrile (50:50, vol/vol) (solvent B), starting with 5%
B and increasing B to levels of 30% at 25 min, 40% at 35 min,
52% at 40 min, 70% at 50 min, 100% at 55 min, and con-
tinuing for 5 min. A re-equilibration time of 15 min was then
required.

Quantitation was achieved at 280 nm by internal standard
method. Tyrosol response factor was detected by multiple
level calibration (R2 = 0.99999), and applied to all extracted
polar compounds because pure standards were not available
for several compounds. The results are expressed as mg/kg
oil (as tyrosol). 

Of the polar compounds identifiable on the chromatogram,
only 18 had identical ultraviolet spectra (λ ≥ 250 nm) in all
samples. They are indicated on the chromatogram in Figure 1
and were used for the chemometric study.

Packages. Multivariate data evaluation was done by
QPARVUS, running under DOS (25).

Chemometric methods. Principal component analysis
(PCA) (26) is a well-known technique to visualize data and
to find the real dimension of a data set. The p parameters,
measured for each sample, describe each sample (object) in a
p-dimensional space (p variables). PCA generates a set of
new orthogonal variables (axes), linear combinations of the
original variables, so that the maximal amount of variance
contained in the data set (information) is concentrated in the
first principal components. The significant principal compo-
nents, that is, the new variables, can be used in place of the
original variables for successive treatment or to visualize the
information contained in the data set.

Loadings are the coefficients of the original variables that
define each principal component. Scores are the projections
of the objects on the new axes. Because PCA concentrates the
variance of the data set in a smaller number of variables than
the original one, it is suitable to reduce the dimensionality of
large data matrices by eliminating the nonsignificant princi-
pal components so that the successive treatments on reduced
data sets are easier. Data were autoscaled (subtraction of the
mean and division by standard deviation for each variable)
before principal-component computation to assign the same
numerical weight to each variable.
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FIG. 1. High-performance liquid chromatographic plot of polar com-
pounds of virgin olive oil. 1, hydroxytyrosol (λmax = 280 nm); 2, tyrosol
(λmax = 275 nm); 3, vanillic acid (λmax = 259 nm); 4, n.e. (chemical
structure not elucidated) (λmax = 310 nm); 5, p-coumaric acid (λmax =
310 nm); 6, dialdehydic form of elenolic acid bonded with hydroxyty-
rosol (λmax = 280 nm) (28); 7, dialdehydic form of elenolic acid bonded
with tyrosol (λmax = 275 nm) (28); 8, n.e. (λmax = 280 nm); 12,
oleoeuropeine aglycone (λmax = 278 nm) (28); 15, n.e. (λmax = 300 nm);
17, n.e. (λmax = 298 nm); 18, n.e. (λmax = 284 nm); 19, n.e. (the spec-
trum shows a decreasing absorbance); 20, n.e. (λmax = 272 nm); 21, n.e.
(λmax = 314 nm); 22, n.e. (λmax = 274 nm); 23, n.e. (λmax = 280 nm).



Partial least squares (PLS) regression (27) is a multivari-
ate linear regression technique. Regression methods build the
model to describe relations between one or more response
variables and predictor variables. For example, responses can
be sensorial scores and biological activity, while predictors
are usually measured chemical, physical, and chemical-phys-
ical parameters. Ordinary least-squares regression cannot be
used when the object number is smaller than the predictor
number and when predictors are correlated. In these cases,
biased methods must be used. PLS is a biased regression
method that is often used in chemistry when predictors are
correlated. After computing latent variables, linear combina-
tions of predictors that are similar to principal components,
PLS finds the maximum correlation direction between re-
sponse and latent variables. PLS simultaneously maximizes
both the variance of latent variables and the correlation with
response. Complexity of the model depends on the number of
latent variables that are significant, according to the maxi-
mum percentage of cross-validated explained variance. After
a regression equation is obtained, it is possible to measure the
importance of predictors by considering the regression coef-
ficients divided by standard deviation of each predictor.

Although it is important to know the model that describes
the relationship between the response and predictors, the final
aim is to use the model to predict an unknown response from
measured predictors. For this reason the model must be vali-
dated. A data set has to be divided into training and evalua-
tion sets. Models are built with the objects of the training set
and successively tested on the objects of the evaluation set,

the responses of which are considered unknown. In this study,
10 random different evaluation groups were used to evaluate
the quality of model prediction (leave-more-out cross valida-
tion method).

Feature selection is performed to find the relevant vari-
ables that describe the relationship between response and pre-
dictors. Even by using biased methods, it is possible to obtain
better models after the deletion of nonrelevant predictors. In
this study, PLS regression was used, performing a number of
cycles equal to the number of predictors. Each time, the pre-
dictor with the lowest importance was deleted. The models
computed with the remaining predictors were compared, and
predictor selection was performed on the basis of maximum
prediction power. The procedure used, that is, PLS on se-
lected features, was validated with three independent test sets
obtained by random selection of 10 objects out of 32 samples.

RESULTS AND DISCUSSION

First, the original data set (Table 1) was examined univari-
ately to test skewness of variables: variables 1, 2, 5, 12, and
14 showed an asymmetric distribution; therefore, a logarith-
mic transform was performed.

The 18 predictors (amount of the single polar compounds
or their logarithmic transforms) were used to compute princi-
pal components. Figure 2 shows the loading and score plot of
the first two principal components, which explain 67.7% of
the total variance. The first principal component clearly
shows the direction of the state of olive health, which im-
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TABLE 1
Data Set

32 objects: Code name rxyyzye
18 variables: Amounts of the polar compounds (mg/kg oil) or their logarithmic transforms in order of their chromatographic elution.
1 response variable: Health score

Object code name

r = 1, 2, 3, null; x = H, L, P, U, F; yy = 7, 10, null; z = t, null; ye = 93, 94 (year)

Variables

Peak Variable Peak Variable Peak Variable Peak Variable
1 log(‘1’) 6 6 15 15 21 21
2 log(‘2’) 7 7 17 17 22 22
3 3 8 8 18 18 23 23
4 4 12 log(‘12’) 19 19
5 log(‘5’) 14 log(‘14’) 20 20

Response variable

Health Health
score Object score Object

1 3P94 8 3Ut94
2 P93, 2P94, 2Pt94, F93, Ft93, 2F94, 2Ft94 9 Ut93, 2Ut94
3 1P94, 1Pt94 10 1Ut94
4 U793, U7t93, 2U794, 2U7t94, U1093, U10t93, 2U1094, 2U10t94 11 3H94, 3Ht94
5 3U94 12 2H94, 2Ht94
6 2U94, 2L94 13 1H94, 1Ht94
7 1U94



proves from left to right. The second principal component
shows the direction of anti-Dacus treatment: scores for sam-
ples obtained from treated olives are generally lower than
those for samples obtained from olives that had the same state
of health but had not been treated.

By observing loadings, that is, the coefficients of original
variables, it is possible to obtain information about the com-
position of principal components: the “health” direction (first
principal component) depends on high levels of the chromato-
graphic peaks 3, 6, 8, 12, 14, 19, and low levels of most of the
peaks at the end of the chromatographic plot, 15–18 and
20–23. An analysis of loadings confirms the results of previ-
ous studies (12–14). In fact, loadings 6 and 12 correspond to
the peaks of two hydroxytyrosol [(3,4-dihydroxyphenyl)-
ethanol] derivatives and, in particular, to the dialdehydic form
of elenolic acid linked to hydroxytyrosol (peak 6) and to an
isomer of oleoeuropeine aglycone (peak 12), recently identi-
fied by Montedoro et al. (28). Because of their orthodipheno-
lic structure, these two compounds are responsible for most
of the antioxidative activity of the total polar fraction.

By observing the plot in greater detail, it can be seen that
the scores from healthier olives [healthy (H) and unselected
(U)] are located on the right side. Moving from right to left,
the first samples were obtained with the best olives (1Ht94,
2Ht94, 1H94, and 2H94). The samples obtained with unse-
lected, not too-ripe olives (1U94 and 2U94) are immediately
after them and near samples obtained with unselected olives
that were protected by anti-Dacus treatments (Ut93, 2Ut94,
and 3Ut94). Since this treatment improves olive conditions,
scores 1Ut94, 2Ut94, and 3Ut94 obviously precede 1U94,
2U94, and 3U94, respectively. In particular, sample 1Ut94 is
comparable to those obtained with the best healthy olives,
both because olive ripening was not advanced and because
anti-Dacus treatments contributed to the preservation of the
polar compounds. Samples 3H94 and 3Ht94 are located a dis-
tance from the other samples obtained with healthy olives be-
cause their advanced ripeness damages polar compounds, as

has already been discussed in a previous study (12). Sample
3U94 is further separated from the best samples because it
was obtained with very ripe olives that had not been protected
with anti-Dacus treatments. There are only four samples ob-
tained from highly infested or otherwise damaged olives that
can be located on the right side of the diagram: 2L94, U7t93,
U10t93, and 2U7t94. This can be easily explained. 2L94 was
obtained from olives in which parasites had not yet reached
the last degree of larval development and thus had not entirely
compromised olive integrity. U7t93, U10t93, and 2U7t94, on
the other hand, were obtained from unselected olives that
were certainly damaged by the storage period, but the state of
health of which was still acceptable as a result of anti-Dacus
treatments.

The following samples from the left side of the diagram
were obtained from the worst olives. First were samples ob-
tained from heavily damaged olives, treated but not very ripe
(1P94 and 1Pt94), then those obtained from untreated olives
at a more advanced degree of ripeness (2P94, P93, 3P94) or
from untreated and stored (U1093 and 2U1094) olives, and,
finally, were those obtained from olives that had fallen into
the nets, both treated and untreated (F93, Ft93 and 2F94). The
second principal component shows the effect of the anti-
Dacus treatment that was particularly marked in samples of
unselected olives. The unselected olives were positively af-
fected by the treatment.

Chromatographic separation of peaks 15–23 is not easy,
particularly without a high-resolution chromatographic sys-
tem. Therefore, peaks 15–23 were summed, even if peak 19
increased with improved olive health, and behaved inversely
with the other peaks. Summing the peaks means that they
lose their individuality, and thus it is not necessary to know
the identity of the substances represented by individual
peaks, according to the blind assay method proposed by
Saxberg et al. (29). The principal components were thus cal-
culated with 11 variables. The first two principal components
explain 66.6% of the total variance. The plot is similar to that
of Figure 2, meaning that the variable sum brings the same
information of the original variables. Because many “rou-
tine” HPLC units are not able to separate the nine peaks
(15–23), the use of their sum allows the same information to
be obtained by means of less complex and expensive appara-
tus. 

Instead of the absolute value of the variable sum, its ratios
with variables that seemed to depend more directly on the
state of olive health were considered. Logarithmic transforms
were used to avoid skewness. Thus 15 variables were ob-
tained, and Figure 3 shows the loading and score plot of the
first two principal components that explain 71.8% of total
variance. The first principal component is confirmed as the
direction of olive health.

Thus, principal components are useful for visualizing the
information of the data set. The aim of this study, however,
was mainly to obtain a quantitative measure of the state of
olive health. Then, oils were classified according to degree of
ripeness and health of the olives, with a score ranging from 1
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FIG. 2. Loading and score plot of the first two principal components
computed with 18 variables.



to 13 (health score), in the direction of increasing quality
(Table 1).

The health score can be considered a response variable to
be correlated with the 15 previously used variables (predictor
variables). A model that describes the relationship between
response and predictors was obtained by the PLS method.
Table 2 shows interesting results. The best linear model in
prediction is obtained by five latent variables. This model ex-
plains 75.2% of the cross-validated variance, in other words,
the health score of an unknown sample can be predicted with
a predictive ability of 75.2% and corresponds to a mean error
of prediction of 1.7. This means that the 15 predictors are use-
ful to describe olive health. Figure 4 shows the plot of pre-
dicted health scores vs. health scores: considering the large
variability of the response, a good linear relation is evident
(R2

a = 0.864 and cross-validated R2
a = 0.752). In Table 2, the

importance of variables is also listed; variables 4, log9s/‘6’)
and log(s/‘8’) are the most important to build the linear
model.

An attempt to find a better model was made by selecting
the relevant predictors by using PLS regression; the criterion
of selection was the importance of predictors. The results of
feature selection are shown in Figure 5. The maximum per-
centage of cross-validated variance (85.3%) was obtained
after elimination of eight predictors. Further elimination of
variables did not improve the predictive ability of the model,
and thus, the best model was built with seven predictors,
log(‘2’), 4, 8, s, log(s/‘6’), log(s/‘12’), and log(s/‘8’). Figure 6
shows the plot of predicted health scores vs. health scores. It
displays a linear relation similar to that obtained with 15 pre-
dictors. The model obtained with seven predictors has a good
prediction ability, with a mean error of 1.1, in other words,
the health score is predicted plus or minus one score value.
An analysis of predicted scores for the various sample groups
shows only slight errors in comparison with health scores for
samples obtained from healthy olives, when the latter had not
reached an advanced degree of ripeness. Instead, samples
3H94 and 3Ht94 show higher errors. In particular, the error
of the latter sample (off by 4 score values) was the highest in
the entire model. Also, in samples obtained from unselected
olives, there were slight differences between predicted health
scores and health scores, and the same can be said for sam-
ples obtained from olives in the worst conditions. For only
two samples (2F94 and P93), higher errors were probably due
to the fact that olives were particularly damaged, thus making
it difficult to assign them any score.

The mean errors in prediction with the three validation test
sets were 2.3, 1.6, and 2.4. This shows that the predicted
scores can be used to represent the state of olive health with
an independent test set. Of course, these results could be
much better if the model were built on a larger data set.

The principal-component analysis allowed the visualiza-
tion of a relationship between the composition of the polar
fraction of virgin olive oils and the state of health of em-
ployed olives. Orthodiphenolic compounds were found to be
a particularly useful tool to differentiate analyzed oils accord-

STABILITY OF VIRGIN OLIVE OILS AND POLAR COMPOUNDS 1021

JAOCS, Vol. 74, no. 8 (1997)

FIG. 3. Loading and score plot of the first two principal components
computed with 15 variables.

TABLE 2
Partial Least Squares Model Computed by 15 Predictors

Explained Cross-validated
Latent variance (%) explained variance Mean error

variable (fitting) (%) (prediction) (prediction)

1 71.78 69.29 1.84
2 75.50 63.74 1.93
3 84.90 62.63 1.93
4 85.40 72.49 1.68
5a 86.40 75.20 1.66
6 86.25 73.12 1.62
7 86.50 71.49 1.70
8 86.31 72.94 1.68

Importance of variables

4 0.1605 log(s/’12’) 0.0686
log(s/’6’) 0.1325 log(‘14’) 0.0470
log(s/’8’) 0.1113 6 0.0374

s 0.0925 log(‘1’) 0.0268
log(‘2’) 0.0725 7 0.0182
log(‘12’) 0.0715 log(s/’7’) 0.0166

8 0.0714 log(‘5’) 0.0039
3 0.0694

aBoldface: best linear model in prediction.

FIG. 4. Predicted health score vs. health score plot. Partial least squares
model obtained by 15 predictors.



ing to the state of health of the olives. Because these com-
pounds also play a significant role in protecting olive oils
from oxidation, the direction of the state of health identified
by the first principal component can also be considered as a
direction of prolonged shelf life. Building a PLS model by in-
cluding the results of this study can be useful because it al-
lows the evaluation, with a good degree of accuracy, of both
the state of health of the employed olives and the shelf life of
the oil itself through analysis of the polar fraction of any olive
oil sample.
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